On the commutativity of torsion free rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On torsion-free periodic rings

There is a great deal of literature on periodic rings, respectively, torsion-free rings (especially of rank two). The aim of this paper is to provide a link between these two topics. All groups considered here are Abelian, with addition as the group operation. By order of an element we always mean the additive order of this element. All rings are associative but not necessarily with identity. T...

متن کامل

On Commutativity of Semiperiodic Rings

Let R be a ring with center Z, Jacobson radical J , and set N of all nilpotent elements. Call R semiperiodic if for each x ∈ R\ (J ∪Z), there exist positive integers m, n of opposite parity such that x − x ∈ N . We investigate commutativity of semiperiodic rings, and we provide noncommutative examples. Mathematics Subject Classification (2000). 16U80.

متن کامل

Remarks on the Commutativity of Rings

Introduction. A celebrated theorem of N. Jacobson [7] asserts that if (1) x*(x) =x for every x in a ring R, where n(x) is an integer greater than one, then R is commutative. In a recent paper [2], I. N. Herstein has shown that it is enough to require that (1) holds for those x in R which are commutators: x= [y, z]=yz — zy of two elements of R. The purpose of this note is to show that if R has n...

متن کامل

On Jordan Isomorphisms of 2-torsion Free Prime Gamma Rings

This paper defines an isomorphism, an anti-isomorphism and a Jordan isomorphism in a gamma ring and develops some important results relating to these concepts. Using these results we prove Herstein’s theorem of classical rings in case of prime gamma rings by showing that every Jordan isomorphism of a 2-torsion free prime gamma ring is either an isomorphism or an anti-isomorphism. AMS Mathematic...

متن کامل

A COMMUTATIVITY CONDITION FOR RINGS

In this paper, we use the structure theory to prove an analog to a well-known theorem of Herstein as follows: Let R be a ring with center C such that for all x,y ? R either [x,y]= 0 or x-x [x,y]? C for some non negative integer n= n(x,y) dependingon x and y. Then R is commutative.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1984

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700001969